Experimental Detection of Quantum Channel Capacities
Autor: | Álvaro Cuevas, Mario A. Ciampini, Massimiliano F. Sacchi, Massimiliano Proietti, Chiara Macchiavello, Paolo Mataloni, Stefano Duranti |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Quantum information
FOS: Physical sciences General Physics and Astronomy Quantum channel 01 natural sciences 010305 fluids & plasmas Physics and Astronomy (all) quantum capacities qubit noisy channels Computer Science::Emerging Technologies Quantum mechanics 0103 physical sciences Photon polarization Quantum communication 010306 general physics Quantum Computer Science::Information Theory Physics Quantum Physics Bell state Observable Channel capacity Qubit Quantum process Bipartite graph Quantum Physics (quant-ph) |
Zdroj: | Physical review letters 119 (2017). doi:10.1103/PhysRevLett.119.100502 info:cnr-pdr/source/autori:Cuevas, Alvaro; Proietti, Massimiliano; Ciampini, Mario Arnolfo; Duranti, Stefano; Mataloni, Paolo; Sacchi, Massimiliano F.; Macchiavello, Chiara/titolo:Experimental Detection of Quantum Channel Capacities/doi:10.1103%2FPhysRevLett.119.100502/rivista:Physical review letters (Print)/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:119 |
DOI: | 10.1103/PhysRevLett.119.100502 |
Popis: | We present an effcient experimental procedure that certifies non vanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of a quantum process tomography. The entangled qubits have a Bell state configuration and are encoded in photon polarization. The lower bounds are found by estimating the Shannon and von Neumann entropies at the output using an optimized basis, whose statistics is obtained by measuring only the three observables $\sigma_{x}\otimes\sigma_{x}$, $\sigma_{y}\otimes\sigma_{y}$ and $\sigma_{z}\otimes\sigma_{z}$. Comment: 5 pages and 3 figures in the principal article, and 4 pages in the supplementary material |
Databáze: | OpenAIRE |
Externí odkaz: |