Reverse Hardy-Littlewood-Sobolev inequalities

Autor: Franca Hoffmann, José A. Carrillo, Matias G. Delgadino, Rupert L. Frank, Jean Dolbeault
Přispěvatelé: Department of Mathematics [Imperial College London], Imperial College London, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Mathematisches Institut, Ludwig-Maximilians Universität München, California Institute of Technology (CALTECH), Department of Computing and Mathematical sciences, ANR-17-CE40-0030,EFI,Entropie, flots, inégalités(2017)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 132, pp.133-165. ⟨10.1016/j.matpur.2019.09.001⟩
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2019.09.001⟩
Popis: This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with free energy functionals and nonlinear diffusion equations involving mean field drifts.
This paper is based on the merging of arXiv:1803.06151 and arXiv:1803.06232
Databáze: OpenAIRE