Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms
Autor: | Beryl Oppenheim, Rebecca Burt, Thomas R. Laws, Mark A. Webber, Ralf Moeller, Fenella D. Halstead, Joanne Elizabeth Thwaite, Marina Raguse |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Light bacteria in planktonic and biofilm growth modes 030106 microbiology Colony Count Microbial medicine.disease_cause Applied Microbiology and Biotechnology nosocomial environment Microbiology Strahlenbiologie 03 medical and health sciences medicine Microbial Viability antimicrobial activity Bacteria Ecology biology Public and Environmental Health Microbiology Pseudomonas aeruginosa Biofilm biology.organism_classification Antimicrobial blue light decontamination applications Acinetobacter baumannii Stenotrophomonas maltophilia 030104 developmental biology Biofilms Wounds and Injuries Enterobacter cloacae Food Science Biotechnology Enterococcus faecium |
Zdroj: | Applied and Environmental Microbiology |
ISSN: | 1098-5336 0099-2240 |
DOI: | 10.1128/aem.00756-16 |
Popis: | The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii , Enterobacter cloacae , Stenotrophomonas maltophilia , Pseudomonas aeruginosa , Escherichia coli , Staphylococcus aureus , Enterococcus faecium , Klebsiella pneumoniae , and Elizabethkingia meningoseptica . All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log 10 decrease in viability after 15 to 30 min of exposure (54 J/cm 2 to 108 J/cm 2 ). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further investigation. |
Databáze: | OpenAIRE |
Externí odkaz: |