Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip

Autor: Pierre Bérard, Bernard Helffer, Rola Kiwan
Přispěvatelé: Institut Fourier (IF), Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), American University in Dubai, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)
Rok vydání: 2021
Předmět:
Mathematics - Differential Geometry
Pure mathematics
Spectral theory
General Mathematics
MSC (2010): 58C40
49Q10

Möbius strip
01 natural sciences
Square (algebra)
Mathematics - Spectral Theory
symbols.namesake
Nodal sets
Dirichlet eigenvalue
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Euler characteristic
0103 physical sciences
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
0101 mathematics
Mathematical Physics
Eigenvalues and eigenvectors
Mathematics
Courant theorem
010102 general mathematics
2010: 58C40
49Q10

Mathematics::Spectral Theory
Eigenfunction
16. Peace & justice
Surface (topology)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
symbols
010307 mathematical physics
Laplacian
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Zdroj: Portugaliae Mathematica
Portugaliae Mathematica, European Mathematical Society Publishing House, 2021, 78 (1), pp.1--41
ISSN: 0032-5155
1662-2758
DOI: 10.4171/pm/2059
Popis: The question of determining for which eigenvalues there exists an eigenfunction which has the same number of nodal domains as the label of the associated eigenvalue (Courant-sharp property) was motivated by the analysis of minimal spectral partitions. In previous works, many examples have been analyzed corresponding to squares, rectangles, disks, triangles, tori, \ldots . A natural toy model for further investigations is the M\"obius strip, a non-orientable surface with Euler characteristic $0$, and particularly the "square" M\"obius strip whose eigenvalues have higher multiplicities. In this case, we prove that the only Courant-sharp Dirichlet eigenvalues are the first and the second, and we exhibit peculiar nodal patterns.
Comment: Revised version prior to publication. Accepted for publication in Portugaliae Mathematica
Databáze: OpenAIRE