Determination of fatty acid profile in cow's milk using mid-infrared spectrometry : interest of applying a variable selection by genetic algorithms before a PLS regression

Autor: M. Ferrand, F. Barillet, B. Huquet, J.M. Trommenschlager, F. Faucon, M. Brochard, H. Larroque, S. Barbey, O. Leray
Přispěvatelé: 149 rue de Bercy, Union nationale des coopératives d’élevage et d’insémination animale (UNCEIA), Domaine expérimental animal du Pin (SEA), Institut National de la Recherche Agronomique (INRA), Station d'Amélioration Génétique des Animaux (SAGA), 42 rue de Châteaudun, Centre National Interprofessionnel de l'Economie Laitière [Paris] (CNIEL), BP 70129, Institut Technique du Lait et des Produits Laitiers, Agro-Systèmes Territoires Ressources Mirecourt (ASTER Mirecourt)
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Chemometrics and Intelligent Laboratory Systems
Chemometrics and Intelligent Laboratory Systems, Elsevier, 2011, 106 (2), pp.183-189. ⟨10.1016/j.chemolab.2010.05.004⟩
ISSN: 0169-7439
DOI: 10.1016/j.chemolab.2010.05.004⟩
Popis: International audience; The new challenges of the dairy industry require an accurate estimation of fine milk composition. The mid-infrared (MIR) spectrometry method appears to be a good, fast and cheap method for assessing milk fatty acid profile. Although partial least squares (PLS) regression is a very useful and powerful method to determine fine milk composition from the spectra, the estimations are not always very accurate and stable over time. Therefore a genetic algorithm (GA) combined with a PLS regression was used to produce models with a reduced number of wavelengths and a better accuracy. The results are a little sensitive to the choice of parameters in the algorithm. The number of wavelengths to consider is reduced substantially by 4 and accuracy is increased on average by 15%.
Databáze: OpenAIRE