Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

Autor: Knorr, Moritz
Přispěvatelé: Stiller, C.
Jazyk: angličtina
Rok vydání: 2018
Předmět:
ISSN: 1613-4214
DOI: 10.5445/ksp/1000080527
Popis: Multikamerasysteme werden heute bereits in einer Vielzahl von Fahrzeugen und mobilen Robotern eingesetzt. Die Anwendungen reichen dabei von einfachen Assistenzfunktionen wie der Erzeugung einer virtuellen Rundumsicht bis hin zur Umfelderfassung, wie sie für teil- und vollautomatisches Fahren benötigt wird. Damit aus den Kamerabildern metrische Größen wie Distanzen und Winkel abgeleitet werden können und ein konsistentes Umfeldmodell aufgebaut werden kann, muss das Abbildungsverhalten der einzelnen Kameras sowie deren relative Lage zueinander bekannt sein. Insbesondere die Bestimmung der relativen Lage der Kameras zueinander, die durch die extrinsische Kalibrierung beschrieben wird, ist aufwendig, da sie nur im Gesamtverbund erfolgen kann. Darüber hinaus ist zu erwarten, dass es über die Lebensdauer des Fahrzeugs hinweg zu nicht vernachlässigbaren Veränderungen durch äußere Einflüsse kommt. Um den hohen Zeit- und Kostenaufwand einer regelmäßigen Wartung zu vermeiden, ist ein Selbstkalibrierungsverfahren erforderlich, das die extrinsischen Kalibrierparameter fortlaufend nachschätzt. Für die Selbstkalibrierung wird typischerweise das Vorhandensein überlappender Sichtbereiche ausgenutzt, um die extrinsische Kalibrierung auf der Basis von Bildkorrespondenzen zu schätzen. Falls die Sichtbereiche mehrerer Kameras jedoch nicht überlappen, lassen sich die Kalibrierparameter auch aus den relativen Bewegungen ableiten, die die einzelnen Kameras beobachten. Die Bewegung typischer Straßenfahrzeuge lässt dabei jedoch nicht die Bestimmung aller Kalibrierparameter zu. Um die vollständige Schätzung der Parameter zu ermöglichen, lassen sich weitere Bedingungsgleichungen, die sich z.B. aus der Beobachtung der Bodenebene ergeben, einbinden. In dieser Arbeit wird dazu in einer theoretischen Analyse gezeigt, welche Parameter sich aus der Kombination verschiedener Bedingungsgleichungen eindeutig bestimmen lassen. Um das Umfeld eines Fahrzeugs vollständig erfassen zu können, werden typischerweise Objektive, wie zum Beispiel Fischaugenobjektive, eingesetzt, die einen sehr großen Bildwinkel ermöglichen. In dieser Arbeit wird ein Verfahren zur Bestimmung von Bildkorrespondenzen vorgeschlagen, das die geometrischen Verzerrungen, die sich durch die Verwendung von Fischaugenobjektiven und sich stark ändernden Ansichten ergeben, berücksichtigt. Darauf aufbauend stellen wir ein robustes Verfahren zur Nachführung der Parameter der Bodenebene vor. Basierend auf der theoretischen Analyse der Beobachtbarkeit und den vorgestellten Verfahren stellen wir ein robustes, rekursives Kalibrierverfahren vor, das auf einem erweiterten Kalman-Filter aufbaut. Das vorgestellte Kalibrierverfahren zeichnet sich insbesondere durch die geringe Anzahl von internen Parametern, sowie durch die hohe Flexibilität hinsichtlich der einbezogenen Bedingungsgleichungen aus und basiert einzig auf den Bilddaten des Multikamerasystems. In einer umfangreichen experimentellen Auswertung mit realen Daten vergleichen wir die Ergebnisse der auf unterschiedlichen Bedingungsgleichungen und Bewegungsmodellen basierenden Verfahren mit den aus einer Referenzkalibrierung bestimmten Parametern. Die besten Ergebnisse wurden dabei durch die Kombination aller vorgestellten Bedingungsgleichungen erzielt. Anhand mehrerer Beispiele zeigen wir, dass die erreichte Genauigkeit ausreichend für eine Vielzahl von Anwendungen ist.
Databáze: OpenAIRE