Approximation by Modified Bivariate Bernstein-Durrmeyer and GBS Bivariate Bernstein-Durrmeyer Operators on a Triangular Region
Autor: | Harun ÇİÇEK, Aydın İZGİ |
---|---|
Rok vydání: | 2022 |
Předmět: |
Matematik
GBS operators Modulus of continuity Voronovskaja and Gr\"{u}ss Voronovskaja theorem General Medicine Mathematics |
Zdroj: | Volume: 5, Issue: 2 135-144 Fundamental Journal of Mathematics and Applications |
ISSN: | 2645-8845 |
DOI: | 10.33401/fujma.1009058 |
Popis: | In this paper, the approximation properties and the rate of convergence of modified bivariate Bernstein-Durrmeyer Operators on a triangular region are examined. Furthermore, definitions and some properties of modulus of continuity for functions of two variables are given. Voronovskaya and Gr\"{u}ss Voronovskaja type theorems are used to determine the order of approximation. The GBS (Generalized Boolean Sum) operator of Bivariate Bernstein-Durrmeyer type on a triangular region is studied. Lastly, some numerical examples are given and related graphs are plotted for comparison. |
Databáze: | OpenAIRE |
Externí odkaz: |