Representations of the Nappi–Witten vertex operator algebra

Autor: William Stewart, Andrei Babichenko, David Ridout, Kazuya Kawasetsu
Rok vydání: 2021
Předmět:
Zdroj: Letters in Mathematical Physics. 111
ISSN: 1573-0530
0377-9017
DOI: 10.1007/s11005-021-01471-5
Popis: The Nappi-Witten model is a Wess-Zumino-Witten model in which the target space is the nonreductive Heisenberg group $H_4$. We consider the representation theory underlying this conformal field theory. Specifically, we study the category of weight modules, with finite-dimensional weight spaces, over the associated affine vertex operator algebra $\mathsf{H}_4$. In particular, we classify the irreducible $\mathsf{H}_4$-modules in this category and compute their characters. We moreover observe that this category is nonsemisimple, suggesting that the Nappi-Witten model is a logarithmic conformal field theory.
21 pages; introduction expanded, references added, minor notation changes
Databáze: OpenAIRE