Developmental Timing of High-Fat Diet Exposure Impacts Glucose Homeostasis in Mice in a Sex-Specific Manner
Autor: | Ian Miao, Timothy J. Kieffer, Ann Y. Lee, Mojibian Majid, Shannon O'Dwyer, Maria M. Glavas, Fan Yang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Male
medicine.medical_specialty Time Factors Endocrinology Diabetes and Metabolism Adipose tissue Gestational Age Mice Inbred Strains Diet High-Fat Mice Overnutrition Fibrosis Pregnancy Diabetes mellitus Internal medicine Internal Medicine medicine Weaning Glucose homeostasis Animals Homeostasis Prenatal Nutritional Physiological Phenomena Sex Characteristics business.industry digestive oral and skin physiology food and beverages nutritional and metabolic diseases medicine.disease Fatty Liver Endocrinology Metabolism Glucose Animals Newborn Diabetes Mellitus Type 2 Prenatal Exposure Delayed Effects Blood sugar regulation lipids (amino acids peptides and proteins) Female Disease Susceptibility Steatosis business hormones hormone substitutes and hormone antagonists |
Zdroj: | Diabetes |
ISSN: | 1939-327X 0012-1797 |
Popis: | We previously demonstrated that male, but not female, Swiss Webster mice are susceptible to diabetes, with incidence increased by early overnutrition and high-fat diet (HFD). In this study, we investigated how HFD in Swiss Webster males and females during preweaning, peripubertal, and postpubertal periods alters glucose homeostasis and diabetes susceptibility. In males, HFD throughout life resulted in the highest diabetes incidence. Notably, switching to chow postpuberty was protective against diabetes relative to switching to chow at weaning, despite the longer period of HFD exposure. Similarly, HFD throughout life in males resulted in less liver steatosis relative to mice with shorter duration of postpubertal HFD. Thus, HFD timing relative to weaning and puberty, not simply exposure length, contributes to metabolic outcomes. Females were protected from hyperglycemia regardless of length or timing of HFD. However, postpubertal HFD resulted in a high degree of hepatic steatosis and adipose fibrosis, but glucose regulation and insulin sensitivity remained unchanged. Interestingly, peri-insulitis was observed in the majority of females but was not correlated with impaired glucose regulation. Our findings reveal critical periods of HFD-induced glucose dysregulation with striking sex differences in Swiss Webster mice, highlighting the importance of careful consideration of HFD timing relative to critical developmental periods. |
Databáze: | OpenAIRE |
Externí odkaz: |