Some hermitian K-groups via geometric topology
Autor: | Alexander Kupers, Manuel Krannich |
---|---|
Přispěvatelé: | Krannich, Manuel [0000-0003-1994-5330], Apollo - University of Cambridge Repository |
Jazyk: | angličtina |
Předmět: |
Pure mathematics
General Mathematics Geometric topology 01 natural sciences Quadratic equation 0103 physical sciences 4903 Numerical and Computational Mathematics FOS: Mathematics Algebraic Topology (math.AT) 19G38 57S05 55P47 Mathematics - Algebraic Topology 0101 mathematics Mathematics::Symplectic Geometry Mathematics Group (mathematics) Applied Mathematics 010102 general mathematics Novelty 4904 Pure Mathematics K-Theory and Homology (math.KT) Hermitian matrix Manifold Mathematics - K-Theory and Homology 49 Mathematical Sciences 010307 mathematical physics Singular homology Symplectic geometry |
Zdroj: | Proceedings of the American Mathematical Society |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/15098 |
Popis: | We compute the first two symplectic quadratic K-theory groups of the integers, or equivalently, the first two stable homology groups of the group of symplectic integral matrices preserving the standard quadratic refinement. The main novelty in our calculation lies in its method, which is based on high-dimensional manifold theory. Comment: 6 pages, to appear in Proceedings of the American Mathematical Society |
Databáze: | OpenAIRE |
Externí odkaz: |