Inelastic responses of a two-bar system with temperature-dependent elastic modulus under cyclic thermomechanical loadings
Autor: | Hasbroucq, Simon, Oueslati, Abdelbacet, de Saxcé, Géry |
---|---|
Přispěvatelé: | Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Mechanical Engineering
Applied Mathematics Temperature-dependent elastic coefficients 02 engineering and technology 021001 nanoscience & nanotechnology Condensed Matter Physics Cyclic thermal loads 01 natural sciences 010101 applied mathematics Materials Science(all) Mechanics of Materials Modeling and Simulation Modelling and Simulation Perfect plasticity General Materials Science 0101 mathematics 0210 nano-technology Asymptotic behaviors |
Zdroj: | International Journal of Solids and Structures International Journal of Solids and Structures, Elsevier, 2010, 47 (14-15), pp.1924-1932. ⟨10.1016/j.ijsolstr.2010.03.032⟩ |
ISSN: | 0020-7683 |
DOI: | 10.1016/j.ijsolstr.2010.03.032⟩ |
Popis: | International audience; This paper is concerned with the elastic plastic response of a two-bar system with temperature-dependent elastic coefficients under cyclic thermomechanical loadings. Such materials are characterized by lack of results concerning the asymptotic behaviors and conditions for shakedown occurrence. This study shows that the considered simple structure is sufficiently complex to experience different periodic long-term behaviors as in classical elastoplasticity. In order to understand how Melan–Koiter method works for such materials, the evolution of the structure's response until the stabilization of the plastic strain (‘shakedown') or the asymptotic dissipative behavior (‘alternating plasticity' or ‘ratcheting') is analytically addressed and the Bree diagram is then constructed. The main result of this work is that the residual stress and strain fields are time-dependent even when shakedown occurs. Besides, we proved that Halphen's conjecture (Halphen, 2005) giving a sufficient condition for shakedown occurrence is not a necessary condition. Finally, numerical results performed by an incremental finite element procedure are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |