Prediction and analysis of combustion instabilities ina model rocket engine
Autor: | Luc-Henry Dorey, William E. Anderson, Martin Schmid, Laurent Selle, Marie Théron, Rodolphe Blouquin |
---|---|
Přispěvatelé: | Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Bertin Technologies (Bertin Technologies), Bertin Technologies, Centre National d'Études Spatiales [Toulouse] (CNES), ONERA - The French Aerospace Lab [Palaiseau], ONERA-Université Paris Saclay (COmUE), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Purdue University [West Lafayette], Bertin Technologies (FRANCE), Centre National d'Études Spatiales - CNES (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE), Purdue University (USA), Technische Universität München - TUM (GERMANY), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Technische Universität München [München] (TUM) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Engineering
Mécanique des fluides Aerospace Engineering Mechanical engineering 02 engineering and technology Combustion 7. Clean energy 01 natural sciences Methane Model Rocket Engine 010305 fluids & plasmas law.invention [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] chemistry.chemical_compound 0203 mechanical engineering law 0103 physical sciences Mass flow rate [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Aerospace engineering Combustion instabilities 020301 aerospace & aeronautics business.industry Mechanical Engineering Large eddy simulation Injector Fuel Technology chemistry Space and Planetary Science LES Rocket engine Coaxial Reynolds-averaged Navier–Stokes equations business |
Zdroj: | Journal of Propulsion and Power Journal of Propulsion and Power, American Institute of Aeronautics and Astronautics, 2014, 30 (4), pp.978-990. ⟨10.2514/1.B35146⟩ |
ISSN: | 0748-4658 |
DOI: | 10.2514/1.B35146⟩ |
Popis: | International audience; This paper is a compilation of the research efforts of five different groups (Bertin Technologies and CNES, IMFT, ONERA, Purdue University and Technische Univer- sität München) on the prediction of combustion instabilities in a model rocket engine. This research was initiated by the REST group (Rocket Engine Stability iniTiative) for the 2nd REST Workshop on Combustion Instability Modeling, which took place in October 2010 at Astrium GmbH in Ottobrunn. The target experiment consists of a single shear coaxial injector using methane and decomposed hydrogen peroxide as reactants. Both the inlet of the injector and the outlet of the chamber are choked, resulting in well-defined acoustic boundary conditions. The length of the oxidizer tube could be varied continuously and its influence on the stability is studied. Many numerical strategies were tested, addressing different physical phenomena at play during unstable combustion. Acoustic solvers, both with and without mean-flow effects were used to draw stability maps. The weak spot of these solvers is that they require the flame response to acoustic perturbations as an input. Large-Eddy Simulations, requiring no such a priori knowledge, were performed with the intent to elucidate flame stabilization and flame response mechanisms. |
Databáze: | OpenAIRE |
Externí odkaz: |