Prediction and analysis of combustion instabilities ina model rocket engine

Autor: Luc-Henry Dorey, William E. Anderson, Martin Schmid, Laurent Selle, Marie Théron, Rodolphe Blouquin
Přispěvatelé: Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Bertin Technologies (Bertin Technologies), Bertin Technologies, Centre National d'Études Spatiales [Toulouse] (CNES), ONERA - The French Aerospace Lab [Palaiseau], ONERA-Université Paris Saclay (COmUE), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Purdue University [West Lafayette], Bertin Technologies (FRANCE), Centre National d'Études Spatiales - CNES (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE), Purdue University (USA), Technische Universität München - TUM (GERMANY), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Technische Universität München [München] (TUM)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Engineering
Mécanique des fluides
Aerospace Engineering
Mechanical engineering
02 engineering and technology
Combustion
7. Clean energy
01 natural sciences
Methane
Model Rocket Engine
010305 fluids & plasmas
law.invention
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
chemistry.chemical_compound
0203 mechanical engineering
law
0103 physical sciences
Mass flow rate
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Aerospace engineering
Combustion instabilities
020301 aerospace & aeronautics
business.industry
Mechanical Engineering
Large eddy simulation
Injector
Fuel Technology
chemistry
Space and Planetary Science
LES
Rocket engine
Coaxial
Reynolds-averaged Navier–Stokes equations
business
Zdroj: Journal of Propulsion and Power
Journal of Propulsion and Power, American Institute of Aeronautics and Astronautics, 2014, 30 (4), pp.978-990. ⟨10.2514/1.B35146⟩
ISSN: 0748-4658
DOI: 10.2514/1.B35146⟩
Popis: International audience; This paper is a compilation of the research efforts of five different groups (Bertin Technologies and CNES, IMFT, ONERA, Purdue University and Technische Univer- sität München) on the prediction of combustion instabilities in a model rocket engine. This research was initiated by the REST group (Rocket Engine Stability iniTiative) for the 2nd REST Workshop on Combustion Instability Modeling, which took place in October 2010 at Astrium GmbH in Ottobrunn. The target experiment consists of a single shear coaxial injector using methane and decomposed hydrogen peroxide as reactants. Both the inlet of the injector and the outlet of the chamber are choked, resulting in well-defined acoustic boundary conditions. The length of the oxidizer tube could be varied continuously and its influence on the stability is studied. Many numerical strategies were tested, addressing different physical phenomena at play during unstable combustion. Acoustic solvers, both with and without mean-flow effects were used to draw stability maps. The weak spot of these solvers is that they require the flame response to acoustic perturbations as an input. Large-Eddy Simulations, requiring no such a priori knowledge, were performed with the intent to elucidate flame stabilization and flame response mechanisms.
Databáze: OpenAIRE