Spontaneous freeze out of dark matter from an early thermal phase transition
Autor: | Hervé Partouche, Lucien Heurtier |
---|---|
Přispěvatelé: | Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
High Energy Physics - Theory
Phase transition critical phenomena: finite temperature Dark matter Massive particle FOS: Physical sciences Scalar potential Astrophysics::Cosmology and Extragalactic Astrophysics Parameter space dark matter: production 7. Clean energy 01 natural sciences WIMP: dark matter cross section: annihilation High Energy Physics - Phenomenology (hep-ph) finite temperature: correction production: thermal 0103 physical sciences fermion: dark matter 010306 general physics Thermal equilibrium Physics High Energy Astrophysical Phenomena (astro-ph.HE) 010308 nuclear & particles physics new physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] dark matter: relic density dark matter: mass dark matter: mass generation dark matter: annihilation Decoupling (cosmology) dark matter: freeze-out Cosmology High Energy Physics - Phenomenology High Energy Physics - Theory (hep-th) Quantum electrodynamics [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] Astrophysics - High Energy Astrophysical Phenomena [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] Lepton |
Zdroj: | Physical Review Phys.Rev.D Phys.Rev.D, 2020, 101 (4), pp.043527. ⟨10.1103/PhysRevD.101.043527⟩ Physical Review D Physical Review D, American Physical Society, 2020, 101 (4), pp.043527. ⟨10.1103/PhysRevD.101.043527⟩ |
ISSN: | 1550-7998 1550-2368 |
DOI: | 10.1103/PhysRevD.101.043527⟩ |
Popis: | We propose a new paradigm for the thermal production of dark matter in the early universe, in which dark-matter particles acquire their mass and freeze out spontaneously from the thermal bath after a dark phase transition takes place. The decoupling arises because the dark-matter particles become suddenly non-relativistic and not because of any decay channel becoming kinematically close. We propose a minimal scenario in which a scalar and a fermionic dark-matter are in thermal equilibrium with the Standard-Model bath. We compute the finite temperature corrections to the scalar potential and identify a region of the parameter space where the fermionic dark-matter mass spontaneously jumps over the temperature when the dark phase transition happens. We explore the phenomenological implications of such a model in simple cases and show that the annihilation cross section of dark-matter particles has to be larger by more than one order of magnitude as compared to the usual constant-mass WIMP scenario in order to accomodate the correct relic abundance. We show that in the spontaneous freeze out regime a TeV-scale fermionic dark-matter that annihilates into leptons through s-wave processes can be accessible to detection in the near future. 14 pages, 8 figures |
Databáze: | OpenAIRE |
Externí odkaz: |