Spontaneous freeze out of dark matter from an early thermal phase transition

Autor: Hervé Partouche, Lucien Heurtier
Přispěvatelé: Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
Phase transition
critical phenomena: finite temperature
Dark matter
Massive particle
FOS: Physical sciences
Scalar potential
Astrophysics::Cosmology and Extragalactic Astrophysics
Parameter space
dark matter: production
7. Clean energy
01 natural sciences
WIMP: dark matter
cross section: annihilation
High Energy Physics - Phenomenology (hep-ph)
finite temperature: correction
production: thermal
0103 physical sciences
fermion: dark matter
010306 general physics
Thermal equilibrium
Physics
High Energy Astrophysical Phenomena (astro-ph.HE)
010308 nuclear & particles physics
new physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
dark matter: relic density
dark matter: mass
dark matter: mass generation
dark matter: annihilation
Decoupling (cosmology)
dark matter: freeze-out
Cosmology
High Energy Physics - Phenomenology
High Energy Physics - Theory (hep-th)
Quantum electrodynamics
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Astrophysics - High Energy Astrophysical Phenomena
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Lepton
Zdroj: Physical Review
Phys.Rev.D
Phys.Rev.D, 2020, 101 (4), pp.043527. ⟨10.1103/PhysRevD.101.043527⟩
Physical Review D
Physical Review D, American Physical Society, 2020, 101 (4), pp.043527. ⟨10.1103/PhysRevD.101.043527⟩
ISSN: 1550-7998
1550-2368
DOI: 10.1103/PhysRevD.101.043527⟩
Popis: We propose a new paradigm for the thermal production of dark matter in the early universe, in which dark-matter particles acquire their mass and freeze out spontaneously from the thermal bath after a dark phase transition takes place. The decoupling arises because the dark-matter particles become suddenly non-relativistic and not because of any decay channel becoming kinematically close. We propose a minimal scenario in which a scalar and a fermionic dark-matter are in thermal equilibrium with the Standard-Model bath. We compute the finite temperature corrections to the scalar potential and identify a region of the parameter space where the fermionic dark-matter mass spontaneously jumps over the temperature when the dark phase transition happens. We explore the phenomenological implications of such a model in simple cases and show that the annihilation cross section of dark-matter particles has to be larger by more than one order of magnitude as compared to the usual constant-mass WIMP scenario in order to accomodate the correct relic abundance. We show that in the spontaneous freeze out regime a TeV-scale fermionic dark-matter that annihilates into leptons through s-wave processes can be accessible to detection in the near future.
14 pages, 8 figures
Databáze: OpenAIRE