Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters

Autor: Ji Hun Park, Jong Choo Lim, A-Young Kim, Dongjin Byun, Joong Kee Lee, Chairul Hudaya, Min Kyu Kim
Rok vydání: 2016
Předmět:
Zdroj: Nanoscale. 8:3307-3313
ISSN: 2040-3372
2040-3364
DOI: 10.1039/c5nr05794a
Popis: Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (∼50 nm) and FTO thin films (∼20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles. The hybrid transparent heater shows excellent optical transmittance (>90%) and high saturation temperature (162 °C) at low applied DC voltage (6 V). Moreover, the FTO/NiCr/AgNW heater exhibits a stable sheet resistance in a hostile environment, hence highlighting the excellent oxidation-resistance of the heating materials. These results indicate that the proposed hybrid transparent heaters could be a promising approach to combat the inherent problems associated with AgNW-based transparent heaters for various functional applications.
Databáze: OpenAIRE