A New Optimal Family of Schröder’s Method for Multiple Zeros
Autor: | Arwa Jeza Alsolami, Mehdi Salimi, Massimiliano Ferrara, Waleed M. Al-Hamdan, Ramandeep Behl, Bruno Antonio Pansera |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Scheme (programming language)
Multiple zeros Computer science General Mathematics schröder’s method Mathematics::Analysis of PDEs 010103 numerical & computational mathematics 01 natural sciences Convergence (routing) Computer Science (miscellaneous) Applied mathematics Order (group theory) 0101 mathematics Nonlinear Sciences::Pattern Formation and Solitons Engineering (miscellaneous) computer.programming_language Quadratic growth lcsh:Mathematics nonlinear uni-variate functions optimal order of convergence Mathematics::Spectral Theory lcsh:QA1-939 efficiency index 010101 applied mathematics Nonlinear system computer |
Zdroj: | Mathematics, Vol 7, Iss 11, p 1076 (2019) Mathematics Volume 7 Issue 11 |
ISSN: | 2227-7390 |
Popis: | Here, we suggest a high-order optimal variant/modification of Schrö der&rsquo s method for obtaining the multiple zeros of nonlinear uni-variate functions. Based on quadratically convergent Schrö s method, we derive the new family of fourth -order multi-point methods having optimal convergence order. Additionally, we discuss the theoretical convergence order and the properties of the new scheme. The main finding of the present work is that one can develop several new and some classical existing methods by adjusting one of the parameters. Numerical results are given to illustrate the execution of our multi-point methods. We observed that our schemes are equally competent to other existing methods. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |