Fractional quantum Hall effect of Bose-Fermi mixtures
Autor: | Tian-Sheng Zeng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
Strongly Correlated Electrons (cond-mat.str-el) Conformal field theory Inverse FOS: Physical sciences 02 engineering and technology Fermion Quantum Hall effect Renormalization group 021001 nanoscience & nanotechnology 01 natural sciences Matrix (mathematics) Condensed Matter - Strongly Correlated Electrons Quantum Gases (cond-mat.quant-gas) 0103 physical sciences Fractional quantum Hall effect 010306 general physics 0210 nano-technology Condensed Matter - Quantum Gases Boson Mathematical physics |
Popis: | Multicomponent quantum Hall effect, under the interplay between intercomponent and intracomponent correlations, leads us to new emergent topological orders. Here, we report the theoretical discovery of fractional quantum hall effect of strongly correlated Bose-Fermi mixtures classified by the $\mathbf{K}=\begin{pmatrix} m & 1\\ 1 & n\\ \end{pmatrix}$ matrix (even $m$ for boson and odd $n$ for fermion), using topological flat band models. Utilizing the state-of-the-art exact diagonalization and density-matrix renormalization group methods, we build up the topological characterization based on three inherent aspects: (i) topological $(mn-1)$-fold ground-state degeneracy equivalent to the determinant of the $\mathbf{K}$ matrix, (ii) fractionally quantized topological Chern number matrix equivalent to the inverse of the $\mathbf{K}$ matrix, and (iii) two parallel-propagating chiral edge branches with level counting $1,2,5,10$ consistent with the conformal field theory description. 6 pages, 5 figures; revised version |
Databáze: | OpenAIRE |
Externí odkaz: |