Real eigenvalues in the non-Hermitian Anderson model

Autor: Ilya Goldsheid, Sasha Sodin
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Ann. Appl. Probab. 28, no. 5 (2018), 3075-3093
The Annals of Applied Probability
Popis: The eigenvalues of the Hatano--Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
21 pp., 2 fig; to appear in Ann. Appl. Probab
Databáze: OpenAIRE