Real eigenvalues in the non-Hermitian Anderson model
Autor: | Ilya Goldsheid, Sasha Sodin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Statistics and Probability
random Schrödinger FOS: Physical sciences Lyapunov exponent 47B80 01 natural sciences Mathematics - Spectral Theory Sample non-Hermitian symbols.namesake 0103 physical sciences FOS: Mathematics 0101 mathematics 010306 general physics Anderson impurity model Spectral Theory (math.SP) Eigenvalues and eigenvectors Mathematical Physics Mathematics Mathematical physics Anderson model 010102 general mathematics Probability (math.PR) Mathematical Physics (math-ph) Mathematics::Spectral Theory 16. Peace & justice Hermitian matrix 47B80 47B36 symbols Statistics Probability and Uncertainty Complex plane 47B36 Mathematics - Probability |
Zdroj: | Ann. Appl. Probab. 28, no. 5 (2018), 3075-3093 The Annals of Applied Probability |
Popis: | The eigenvalues of the Hatano--Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane. 21 pp., 2 fig; to appear in Ann. Appl. Probab |
Databáze: | OpenAIRE |
Externí odkaz: |