The stochastic Weiss conjecture for bounded analytic semigroups

Autor: Bernhard H. Haak, Jamil Abreu, Jan van Neerven
Přispěvatelé: Instituto de Matem atica, Instituto de Matemática, Estatística e Computação Científica [Brésil] (IMECC), Universidade Estadual de Campinas (UNICAMP)-Universidade Estadual de Campinas (UNICAMP), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Analysis group, TU Delft, Delft University of Technology (TU Delft)-Delft University of Technology (TU Delft), ANR-12-BS01-0013,HAB,Aux frontières de l'analyse Harmonique(2012)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Journal London Mathematical Society
Journal London Mathematical Society, 2013, 88 (1), pp.181-201. ⟨10.1112/jlms/jdt003⟩
DOI: 10.1112/jlms/jdt003⟩
Popis: Suppose -A admits a bounded H-infinity calculus of angle less than pi/2 on a Banach space E with Pisier's property (alpha), let B be a bounded linear operator from a Hilbert space H into the extrapolation space E_{-1} of E with respect to A, and let W_H denote an H-cylindrical Brownian motion. Let gamma(H,E) denote the space of all gamma-radonifying operators from H to E. We prove that the following assertions are equivalent: (i) the stochastic Cauchy problem dU(t) = AU(t)dt + BdW_H(t) admits an invariant measure on E; (ii) (-A)^{-1/2} B belongs to gamma(H,E); (iii) the Gaussian sum \sum_{n\in\mathbb{Z}} \gamma_n 2^{n/2} R(2^n,A)B converges in gamma(H,E) in probability. This solves the stochastic Weiss conjecture proposed recently by the second and third named authors.
Comment: 17 pages; submitted for publication
Databáze: OpenAIRE