Shifted coisotropic correspondences
Autor: | Valerio Melani, Rune Haugseng, Pavel Safronov |
---|---|
Přispěvatelé: | University of Zurich |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
General Mathematics Coproduct Mathematics - Category Theory Cobordism Poisson distribution Mathematics - Algebraic Geometry symbols.namesake 10123 Institute of Mathematics 510 Mathematics Mathematics - Symplectic Geometry Iterated function Mathematics::Category Theory Morita therapy symbols FOS: Mathematics Algebraic Topology (math.AT) Symplectic Geometry (math.SG) Category Theory (math.CT) Mathematics - Algebraic Topology Equivalence (measure theory) Algebraic Geometry (math.AG) Mathematics 2600 General Mathematics |
Zdroj: | Haugseng, R, Melani, V & Safronov, P 2020, ' Shifted Coisotropic Correspondences ', Journal of the Institute of Mathematics of Jussieu . https://doi.org/10.1017/S1474748020000274 |
DOI: | 10.5167/uzh-209750 |
Popis: | We define (iterated) coisotropic correspondences between derived Poisson stacks, and construct symmetric monoidal higher categories of derived Poisson stacks where the $i$-morphisms are given by $i$-fold coisotropic correspondences. Assuming an expected equivalence of different models of higher Morita categories, we prove that all derived Poisson stacks are fully dualizable, and so determine framed extended TQFTs by the Cobordism Hypothesis. Along the way we also prove that the higher Morita category of $E_{n}$-algebras with respect to coproducts is equivalent to the higher category of iterated cospans. Comment: 51 pages, v2: accepted version |
Databáze: | OpenAIRE |
Externí odkaz: |