Pole-skipping and Rarita-Schwinger fields
Autor: | Nejc Ceplak, David Vegh |
---|---|
Přispěvatelé: | Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
High Energy Physics - Theory
Field (physics) gauge/gravity duality chaos FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) Lyapunov exponent 01 natural sciences General Relativity and Quantum Cosmology horizon Momentum symbols.namesake Rarita-Schwinger equation 0103 physical sciences String theory 010306 general physics space: anti-de Sitter Mathematical physics Physics 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] Horizon Equations of motion two-point function duality: holography field equations Schwarzschild High Energy Physics - Theory (hep-th) quantum gravity Frequency domain Rarita–Schwinger equation symbols [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] Schwarzschild radius |
Zdroj: | Phys.Rev.D Phys.Rev.D, 2021, 103 (10), pp.106009. ⟨10.1103/PhysRevD.103.106009⟩ Physical Review D Physical Review Physical Review D, American Physical Society, 2021, 103 (10), pp.106009. ⟨10.1103/PhysRevD.103.106009⟩ |
ISSN: | 1550-7998 1550-2368 |
DOI: | 10.1103/PhysRevD.103.106009⟩ |
Popis: | In this note we analyse the equations of motion of a minimally coupled Rarita-Schwinger field near the horizon of an anti-de Sitter-Schwarzschild geometry. We find that at special complex values of the frequency and momentum there exist two independent regular solutions that are ingoing at the horizon. These special points in Fourier space are associated with the `pole-skipping' phenomenon in thermal two-point functions of operators that are holographically dual to the bulk fields. We find that the leading pole-skipping point is located at a positive imaginary frequency with the distance from the origin being equal to half of the Lyapunov exponent for maximally chaotic theories. 9 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |