Learning Disentangled Representations via Mutual Information Estimation

Autor: Mathias Ortner, Eduardo Hugo Sanchez, Mathieu Serrurier
Přispěvatelé: Argumentation, Décision, Raisonnement, Incertitude et Apprentissage (IRIT-ADRIA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, IRT Saint Exupéry - Institut de Recherche Technologique, Airbus Defence and Space [Toulouse]
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: ECCV 2020: Computer Vision
16th European Conference on Computer Vision-ECCV 2020
16th European Conference on Computer Vision-ECCV 2020, Aug 2020, online, France. pp.205-221, ⟨10.1007/978-3-030-58542-6_13⟩
Computer Vision – ECCV 2020 ISBN: 9783030585419
ECCV (22)
DOI: 10.1007/978-3-030-58542-6_13⟩
Popis: ISBN 978-3-030-58541-9; International audience; In this paper, we investigate the problem of learning disentangled representations. Given a pair of images sharing some attributes, we aim to create a low-dimensional representation which is split into two parts: a shared representation that captures the common information between the images and an exclusive representation that contains the specific information of each image. To address this issue, we propose a model based on mutual information estimation without relying on image reconstruction or image generation. Mutual information maximization is performed to capture the attributes of data in the shared and exclusive representations while we minimize the mutual information between the shared and exclusive representation to enforce representation disentanglement. We show that these representations are useful to perform downstream tasks such as image classification and image retrieval based on the shared or exclusive component. Moreover, classification results show that our model outperforms the state-of-the-art model based on VAE/GAN approaches in representation disentanglement.
Databáze: OpenAIRE