Images of multilinear polynomials in the algebra of finitary matrices contain trace zero matrices

Autor: Daniel Vitas
Rok vydání: 2021
Předmět:
Zdroj: Linear Algebra and its Applications. 626:221-233
ISSN: 0024-3795
DOI: 10.1016/j.laa.2021.05.018
Popis: Let $F$ be an infinite field and let $f$ be a nonzero multilinear polynomial with coefficients in $F$. We prove that for every positive integer $d$ there exists a positive integer $s$ such that $f(M_{s}(F))$, the image of $f$ in $M_{s}(F)$, contains all trace zero $d \times d$ matrices. In particular, the image of $f$ in the algebra of all finitary matrices contains all trace zero finitary matrices.
11 pages, 0 figures, submited to Linear Algebra and Its Applications
Databáze: OpenAIRE