Phosphine modification of proline-glycine-proline tripeptide and study of its neuroprotective properties
Autor: | Myasoedov F. Nikolay, Lednev V. Boris, Ustyugov A. Alexey, Dmitriev E. Maxim, Ragulin V. Valery, Vinyukov V. Alexey, Freyman M. Vladimir, Shevchenko P. Valery, Sidoruk N. Kristina, Andreeva A. Lyudmila, Dobrovolskiy A. Yuriy |
---|---|
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Modern medicine Proline Phosphines Stereochemistry Isostere Biophysics Peptide Tripeptide Protein Aggregation Pathological Biochemistry Neuroprotection 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Cell Line Tumor Humans Peptide bond Molecular Biology Peptide sequence chemistry.chemical_classification Chemistry Neurodegenerative Diseases Cell Biology Neuroprotective Agents 030104 developmental biology 030220 oncology & carcinogenesis Oligopeptides Phosphine |
Zdroj: | Biochemical and Biophysical Research Communications. 539:15-19 |
ISSN: | 0006-291X |
DOI: | 10.1016/j.bbrc.2020.12.087 |
Popis: | Background Treatment of neurodegenerative diseases, such as Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, is one of the priority directions in modern medicine. Thus, search and production of new physiologically active substances for the treatment of neurodegenerative disorders is one of the most important tasks for organic chemistry. The approach based on the replacement of a peptide bond in a peptide molecule with a structural isostere, non-hydrolyzable methylene phosphoryl fragment makes it possible to increase the metabolic stability of peptide molecules to the destructive action of peptidases. Methods This work is devoted to the approbation of a new synthetic approach to the production of physiologically active substances in a series of peptide-type compounds with activity by replacing the peptide bond with isosteric methylene-phosphoryl fragment with the preservation of the original amino acid sequence. Results A phosphine analog of the known physiologically active tripeptide proline-glycine-proline was obtained, cytotoxicity and neuroprotective properties of the initial tripeptide and its phosphine analog were studied. Conclusion Preliminary biological tests have shown that the obtained phosphine analog of the proline-glycine-proline tripeptide is involved in modulating the formation of sediments in the cellular system of proteinopathy, which may indicate their potential antiaggregatory properties. |
Databáze: | OpenAIRE |
Externí odkaz: |