Microscopic calculations in theA=6system

Autor: Bevelacqua Jj
Rok vydání: 1986
Předmět:
Zdroj: Physical Review C. 33:699-702
ISSN: 0556-2813
DOI: 10.1103/physrevc.33.699
Popis: The A=6 structure problem is solved within the framework of the nuclear shell model. Model states are expanded upon a basis of properly symmetrized, translationally invariant harmonic oscillator eigenstates including states of up to 6\ensuremath{\Elzxh}\ensuremath{\omega} of excitation. The model interaction is based upon a modification of the two-body Sussex interaction. Eigenvalues and (${J}^{\ensuremath{\pi}}$,T) values are predicted for the ground states of the following systems: $^{6}\mathrm{n}$, $^{6}\mathrm{H}$, $^{6}\mathrm{He}$, $^{6}\mathrm{Li}$, $^{6}\mathrm{Be}$, $^{6}\mathrm{B}$, and $^{6}\mathrm{C}$. The ground state binding energies are within 4 percent of experiment for $^{6}\mathrm{He}$, $^{6}\mathrm{Li}$, and $^{6}\mathrm{Be}$. Excited states for the $^{6}\mathrm{He}$, $^{6}\mathrm{Li}$, and $^{6}\mathrm{Be}$ systems are determined and compared to experiment and other calculations. The model spectra for the $^{6}\mathrm{Li}$ system is similar to that proposed by Ajzenberg-Selove. However, the $^{6}\mathrm{He}$ and $^{6}\mathrm{Be}$ spectra contain levels in addition to those suggested by existing compilations. In particular, the $^{6}\mathrm{He}$ and $^{6}\mathrm{Be}$ level spectra have the following level ordering: (${0}^{+}$,1), (${2}^{+}$, 1), (${1}^{+}$,0), (${0}^{+}$,1), (${0}^{+}$,1), (${3}^{+}$,0) (${2}^{+}$,1), (${4}^{\mathrm{\ensuremath{-}}}$,1), (${2}^{\mathrm{\ensuremath{-}}}$,1), (${3}^{\mathrm{\ensuremath{-}}}$,1), and (${4}^{+}$,1).
Databáze: OpenAIRE