Efficiently finding low-sum copies of spanning forests in zero-sum complete graphs via conditional expectation
Autor: | Johannes Pardey, Dieter Rautenbach |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Discrete Applied Mathematics. 328:108-116 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2022.12.014 |
Popis: | For a fixed positive $\epsilon$, we show the existence of a constant $C_\epsilon$ with the following property: Given a $\pm1$-edge-labeling $c:E(K_n)\to \{ -1,1\}$ of the complete graph $K_n$ with $c(E(K_n))=0$, and a spanning forest $F$ of $K_n$ of maximum degree $\Delta$, one can determine in polynomial time an isomorphic copy $F'$ of $F$ in $K_n$ with $|c(E(F'))|\leq \left(\frac{3}{4}+\epsilon\right)\Delta+C_\epsilon.$ Our approach is based on the method of conditional expectation. |
Databáze: | OpenAIRE |
Externí odkaz: |