Stokes eigenmodes in cubic domain: their symmetry properties

Autor: E. Leriche, P. Lallemand, G. Labrosse
Přispěvatelé: LAboratoire de Mathématiques et PhySique (LAMPS), Université de Perpignan Via Domitia (UPVD), Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies, Beijing Computational Science Research Center [Beijing] (CSRC), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Theoretical and Computational Fluid Dynamics
Theoretical and Computational Fluid Dynamics, Springer Verlag, 2014, 28 (3), pp.335-356. ⟨10.1007/s00162-014-0318-5⟩
ISSN: 0935-4964
1432-2250
DOI: 10.1007/s00162-014-0318-5⟩
Popis: This paper is dedicated to a detailed analysis of the symmetry properties of the cubical Stokes eigenmodes and to the numerical verification of its predictions. These modes are computed numerically by using two different Stokes solvers, the Projection-Diffusion Chebyshev spectral method and a lattice Boltzmann approach. They distribute themselves into 10 symmetry families, 2 families of singlets, 2 families of doublets and 6 families of triplets. The existence of the singlets, doublets and triplets is directly related to the fact that two different bases can be constructed for describing the cyclic-permutation state operator. The singlets and doublets are associated with one of these bases, and they are therefore generated together, the triplets being associated with the other basis.
Databáze: OpenAIRE