Identification and characterization of an Eimeria-conserved protein in Eimeria tenella

Autor: Qiping Zhao, Ting Li, Liujia Li, Shunhai Zhu, Bing Huang, Hongyu Han, Youling Wu, Yange Wang, Hui Dong
Rok vydání: 2013
Předmět:
Zdroj: Parasitology research. 113(2)
ISSN: 1432-1955
Popis: The precocious lines of Eimeria spp. have unique phenotypes. However, the genetic basis of the precocious phenotype is still poorly understood. The identification of Eimeria genes controlling the precocious phenotype is of immense importance in the fight against coccidiosis. In the present study, a novel gene of Eimeria maxima was cloned using rapid amplification of cDNA ends (RACE) based on the expressed sequence tag (EST). Homologous genes were also found in Eimeria tenella and Eimeria acervulina. Alignment of the amino acid sequences from E. tenella, E. maxima, and E. acervulina showed 80-86 % identity, demonstrating a conserved protein in different Eimeria spp. This gene, designated Eimeria-conserved protein (ECP), contained 235 amino acids with a predicted molecular mass of 25.4 kDa and had 100 % identity with one annotated protein from E. maxima (Emax_0517). Real-time PCR and Western blot analysis revealed that the expression of ECP at mRNA and protein level in E. tenella is developmentally regulated. Messenger RNA levels from the ECP gene were higher in sporozoites than in other developmental stages (unsporulated oocysts, sporulated oocysts, and second-generation merozoites). Expression of ECP protein was detected in unsporulated oocysts, increased in abundance in sporulated oocysts, and was most prominent in sporozoites. Thereafter, the level of the ECP protein decreased, and no ECP-specific protein was detected in second-generation merozoites. Immunostaining with anti-rECP indicated that ECP is highly concentrated in both refractile bodies (RB) of free sporozoites, but is located at the apical end of the sporozoites after invasion of DF-1 cells. The specific staining of the ECP protein becomes more intense in trophozoites and immature first-generation schizonts, but decreases in mature first-generation schizonts. Inhibition of the function of ECP using specific antibodies reduced the ability of E. tenella sporozoites to invade host cells. Compared with the parent strain, both mRNA and protein expression levels in the sporulated oocyst were downregulated in the precocious line of E. tenella. These results suggest that ECP may be involved in invasion and development of the first-generation merogony stage of E. tenella. Findings of downregulation of ECP mRNA and protein expression in the precocious line enrich the study of the precocious phenotype of Eimeria.
Databáze: OpenAIRE