Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition
Autor: | Peter Aleström, Hajira Shreen Hajan, Cecilia Lanny Winata, Serene G. P. Lee, Håvard Aanes, Chi Ho Lin, Zhiyuan Gong, Jieqi P. Chen, Vladimir Korzh, Sinnakaruppan Mathavan, Kandhadayar G. Srinivasan, Philippe Collas, Guillaume Bourque, Adrian Y.M. Lim |
---|---|
Rok vydání: | 2011 |
Předmět: |
animal structures
Polyadenylation Zygote Biology Genome Deep sequencing Transcriptome Genetics Animals RNA Messenger Gene Zebrafish Genetics (clinical) Base Sequence Sequence Analysis RNA Research Zebrafish Proteins biology.organism_classification RNA Messenger Stored MRNA Sequencing embryonic structures Maternal to zygotic transition |
Zdroj: | Genome research. 21(8) |
ISSN: | 1549-5469 |
Popis: | Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%–60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish. |
Databáze: | OpenAIRE |
Externí odkaz: |