Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids

Autor: Robert Kerr, Patrick C. Howlett, Fangfang Chen, Jean Le Bideau, Nicolas Dupré, Driss Mazouzi, Maria Forsyth, Dominique Guyomard, Khryslyn Arano, Srdan Begic, Nicolas Gautier, Bernard Lestriez, Dmitrii Rakov
Přispěvatelé: Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Deakin University, Burwood, Australia, Deakin University [Burwood], Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), Université Sidi Mohamed Ben Abdellah - Fès [Université de Taza] (USMBA)
Rok vydání: 2021
Předmět:
Zdroj: ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2021, 13 (24), pp.28281-28294. ⟨10.1021/acsami.1c06465⟩
ISSN: 1944-8252
1944-8244
DOI: 10.1021/acsami.1c06465
Popis: International audience; The latest advances in the stabilization of Li/Na metal battery and Li-ion battery cycling have highlighted the importance of electrode/electrolyte interface [solid electrolyte interphase (SEI)] and its direct link to cycling behavior. To understand the structure and properties of the SEI, we used combined experimental and computational studies to unveil how the ionic liquid (IL) cation nature and salt concentration impact the silicon/IL electrolyte interfacial structure and the formed SEI. The nature of the IL cation is found to be important to control the electrolyte reductive decomposition that influences the SEI composition and properties and the reversibility of the Li–Si alloying process. Also, increasing the Li salt concentration changes the interface structure for a favorable and less resistive SEI. The most promising interface for the Si-based battery was found to be in P1222FSI with 3.2 m LiFSI, which leads to an optimal SEI after 100 cycles in which LiF and trapped LiFSI are the only distinguishable lithiated and fluorinated products detected. This study shows a clear link between the nanostructure of the IL electrolyte near the electrode surface, the resulting SEI, and the Si negative electrode cycling performance. More importantly, this work will aid the rational design of Si-based Li-ion batteries using IL electrolytes in an area that has so far been neglected, reinforcing the benefits of superconcentrated electrolyte systems.
Databáze: OpenAIRE