Online Streaming End-to-End Neural Diarization Handling Overlapping Speech and Flexible Numbers of Speakers
Autor: | Leibny Paola García Perera, Yuki Takashima, Yawen Xue, Shota Horiguchi, Kenji Nagamatsu, Yusuke Fujita, Shinji Watanabe |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
Speaker diarisation Sound (cs.SD) End-to-end principle Audio and Speech Processing (eess.AS) Computer science Speech recognition FOS: Electrical engineering electronic engineering information engineering Computer Science - Sound Electrical Engineering and Systems Science - Audio and Speech Processing |
Popis: | We propose a streaming diarization method based on an end-to-end neural diarization (EEND) model, which handles flexible numbers of speakers and overlapping speech. In our previous study, the speaker-tracing buffer (STB) mechanism was proposed to achieve a chunk-wise streaming diarization using a pre-trained EEND model. STB traces the speaker information in previous chunks to map the speakers in a new chunk. However, it only worked with two-speaker recordings. In this paper, we propose an extended STB for flexible numbers of speakers, FLEX-STB. The proposed method uses a zero-padding followed by speaker-tracing, which alleviates the difference in the number of speakers between a buffer and a current chunk. We also examine buffer update strategies to select important frames for tracing multiple speakers. Experiments on CALLHOME and DIHARD II datasets show that the proposed method achieves comparable performance to the offline EEND method with 1-second latency. The results also show that our proposed method outperforms recently proposed chunk-wise diarization methods based on EEND (BW-EDA-EEND). |
Databáze: | OpenAIRE |
Externí odkaz: |