A note on the Hurwitz action on reflection factorizations of Coxeter elements in complex reflection groups
Autor: | Joel Brewster Lewis |
---|---|
Rok vydání: | 2020 |
Předmět: |
Transitive relation
Mathematics::Combinatorics Group (mathematics) Applied Mathematics Coxeter group Group Theory (math.GR) Action (physics) Theoretical Computer Science Combinatorics Reflection (mathematics) Computational Theory and Mathematics FOS: Mathematics Discrete Mathematics and Combinatorics Mathematics - Combinatorics Geometry and Topology Combinatorics (math.CO) Mathematics - Group Theory Mathematics |
DOI: | 10.48550/arxiv.2001.08238 |
Popis: | We show that the Hurwitz action is "as transitive as possible" on reflection factorizations of Coxeter elements in the well-generated complex reflection groups $G(d, 1, n)$ (the group of $d$-colored permutations) and $G(d, d, n)$. Comment: 11 pages |
Databáze: | OpenAIRE |
Externí odkaz: |