Symmetry protection of photonic entanglement in the interaction with a single nanoaperture
Autor: | Lorenzo Marrucci, Nora Tischler, Fabio Sciarrino, Gabriel Molina-Terriza, Alexander Büse, Vincenzo D'Ambrosio, Mathieu L. Juan |
---|---|
Přispěvatelé: | European Commission, European Research Council, Australian Research Council, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Büse, Alexander, Juan, Mathieu L., Tischler, Nora, D'Ambrosio, Vincenzo, Sciarrino, Fabio, Marrucci, Lorenzo, Molina-Terriza, Gabriel |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
European research General Physics and Astronomy Physics::Optics 02 engineering and technology Public administration 021001 nanoscience & nanotechnology 01 natural sciences 7. Clean energy Research council Quantum mechanics 0103 physical sciences media_common.cataloged_instance Christian ministry European union 010306 general physics 0210 nano-technology media_common |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Digital.CSIC: Repositorio Institucional del CSIC Consejo Superior de Investigaciones Científicas (CSIC) Physical Review Letters |
ISSN: | 1533-7146 |
Popis: | In this work, we experimentally show that quantum entanglement can be symmetry protected in the interaction with a single subwavelength plasmonic nanoaperture, with a total volume of V∼0.2λ3. In particular, we experimentally demonstrate that two-photon entanglement can be either completely preserved or completely lost after the interaction with the nanoaperture, solely depending on the relative phase between the quantum states. We achieve this effect by using specially engineered two-photon states to match the properties of the nanoaperture. In this way we can access a symmetry protected state, i.e., a state constrained by the geometry of the interaction to retain its entanglement. In spite of the small volume of interaction, we show that the symmetry protected entangled state retains its main properties. This connection between nanophotonics and quantum optics probes the fundamental limits of the phenomenon of quantum interference. L. M. and F. S. acknowledge financial support from the European Union Horizon 2020 program, within the European Research Council (ERC) Grant No. 694683, PHOSPhOR. G. M. T. acknowledges financial support from the Australian Research Council through the Future fellowship program FT110100924 and the Spanish Ministry of Science, Innovation and Universities (MICIN) Project No. FIS2017-87363-P. |
Databáze: | OpenAIRE |
Externí odkaz: |