Acinetobacter baumannii NCIMB8209: A rare environmental strain displaying extensive insertion sequence-mediated genome remodeling resulting in the loss of exposed cell structures and defensive mechanisms

Autor: Bruno Alejandro Steimbrüch, Martín Espariz, Howard A. Shuman, Juan Ignacio Díaz Miloslavich, Joana L. Seravalle, Alejandro M. Viale, Guillermo Daniel Repizo
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Acinetobacter baumannii
lcsh:QR1-502
virulence factors
comparative genomics
medicine.disease_cause
Genome
lcsh:Microbiology
Clinical Science and Epidemiology
purl.org/becyt/ford/1 [https]
Plasmid
Drug Resistance
Multiple
Bacterial

Environmental Microbiology
CRISPR
Insertion sequence
Phylogeny
Genetics
education.field_of_study
0303 health sciences
biology
Phylogenetic tree
Genomics
Plants
QR1-502
Anti-Bacterial Agents
3. Good health
environmental Acinetobacter baumannii
VIRULENCE FACTORS
Research Article
COMPARATIVE GENOMICS
Genomic Islands
ENVIRONMENTAL RESERVOIRS
Population
PREANTIBIOTIC-ERA ACINETOBACTER BAUMANNII
Virulence
Microbiology
03 medical and health sciences
Antibiotic resistance
ENVIRONMENTAL ACINETOBACTER BAUMANNII
medicine
education
purl.org/becyt/ford/1.6 [https]
Molecular Biology
Gene
030304 developmental biology
Comparative genomics
Whole Genome Sequencing
Pseudomonas aeruginosa
INSERTION SEQUENCES
030306 microbiology
Genetic Variation
biochemical phenomena
metabolism
and nutrition

preantibiotic-era Acinetobacter baumannii
bacterial infections and mycoses
biology.organism_classification
insertion sequences
Genes
Bacterial

bacteria
environmental reservoirs
Zdroj: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
mSphere, Vol 5, Iss 4 (2020)
mSphere, Vol 5, Iss 4, p e00404-20 (2020)
mSphere
DOI: 10.1101/2020.04.30.071514
Popis: Acinetobacter baumannii is an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) opportunistic pathogen, with poorly defined natural habitats/reservoirs outside the clinical setting. A. baumannii arose from the Acinetobacter calcoaceticus-A. baumannii complex as the result of a population bottleneck, followed by a recent population expansion from a few clinically relevant clones endowed with an arsenal of resistance and virulence genes. Still, the identification of virulence traits and the evolutionary paths leading to a pathogenic lifestyle has remained elusive, and thus, the study of nonclinical (“environmental”) A. baumannii isolates is necessary. We conducted here comparative genomic and virulence studies on A. baumannii NCMBI8209 isolated in 1943 from the microbiota responsible for the decomposition of guayule, and therefore well differentiated both temporally and epidemiologically from the multidrug-resistant strains that are predominant nowadays. Our work provides insights on the adaptive strategies used by A. baumannii to escape from host defenses and may help the adoption of measures aimed to limit its further dissemination.
Acinetobacter baumannii represents nowadays an important nosocomial pathogen of poorly defined reservoirs outside the clinical setting. Here, we conducted whole-genome sequencing analysis of the Acinetobacter sp. NCIMB8209 collection strain, isolated in 1943 from the aerobic degradation (retting) of desert guayule shrubs. Strain NCIMB8209 contained a 3.75-Mb chromosome and a plasmid of 134 kb. Phylogenetic analysis based on core genes indicated NCIMB8209 affiliation to A. baumannii, a result supported by the identification of a chromosomal blaOXA-51-like gene. Seven genomic islands lacking antimicrobial resistance determinants, 5 regions encompassing phage-related genes, and notably, 93 insertion sequences (IS) were found in this genome. NCIMB8209 harbors most genes linked to persistence and virulence described in contemporary A. baumannii clinical strains, but many of the genes encoding components of surface structures are interrupted by IS. Moreover, defense genetic islands against biological aggressors such as type 6 secretion systems or CRISPR-cas are absent from this genome. These findings correlate with a low capacity of NCIMB8209 to form biofilm and pellicle, low motility on semisolid medium, and low virulence toward Galleria mellonella and Caenorhabditis elegans. Searching for catabolic genes and concomitant metabolic assays revealed the ability of NCIMB8209 to grow on a wide range of substances produced by plants, including aromatic acids and defense compounds against external aggressors. All the above features strongly suggest that NCIMB8209 has evolved specific adaptive features to a particular environmental niche. Moreover, they also revealed that the remarkable genetic plasticity identified in contemporary A. baumannii clinical strains represents an intrinsic characteristic of the species. IMPORTANCE Acinetobacter baumannii is an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) opportunistic pathogen, with poorly defined natural habitats/reservoirs outside the clinical setting. A. baumannii arose from the Acinetobacter calcoaceticus-A. baumannii complex as the result of a population bottleneck, followed by a recent population expansion from a few clinically relevant clones endowed with an arsenal of resistance and virulence genes. Still, the identification of virulence traits and the evolutionary paths leading to a pathogenic lifestyle has remained elusive, and thus, the study of nonclinical (“environmental”) A. baumannii isolates is necessary. We conducted here comparative genomic and virulence studies on A. baumannii NCMBI8209 isolated in 1943 from the microbiota responsible for the decomposition of guayule, and therefore well differentiated both temporally and epidemiologically from the multidrug-resistant strains that are predominant nowadays. Our work provides insights on the adaptive strategies used by A. baumannii to escape from host defenses and may help the adoption of measures aimed to limit its further dissemination.
Databáze: OpenAIRE