Probing neutron-hidden neutron transitions with the MURMUR experiment

Autor: Guillaume Pignol, O. Méplan, Michaël Sarrazin, S. Kalcheva, Coraline Stasser, Bernard Coupé, J. Lamblin, Steven Van Dyck, Guy Terwagne
Přispěvatelé: Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Physics - Instrumentation and Detectors
Physics and Astronomy (miscellaneous)
noise: low
Nuclear Theory
nucl-ex
7. Clean energy
01 natural sciences
High Energy Physics - Experiment
law.invention
membrane model
High Energy Physics - Experiment (hep-ex)
High Energy Physics - Phenomenology (hep-ph)
law
Limit (mathematics)
Nuclear Experiment (nucl-ex)
Nuclear Experiment
physics.ins-det
Physics
hep-ph
Instrumentation and Detectors (physics.ins-det)
matter: mirror
nucleon: transition
High Energy Physics - Phenomenology
Electromagnetic shielding
constraint
Astrophysics::High Energy Astrophysical Phenomena
FOS: Physical sciences
Context (language use)
lcsh:Astrophysics
[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]
Nuclear physics
weak interaction
0103 physical sciences
lcsh:QB460-466
Neutron
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
010306 general physics
Engineering (miscellaneous)
010308 nuclear & particles physics
hep-ex
shielding
background
nucleus
Nuclear reactor
Nuclear reactor core
regeneration
lcsh:QC770-798
nuclear reactor
Mirror matter
experimental results
Zdroj: European Physical Journal C: Particles and Fields
European Physical Journal C: Particles and Fields, Springer Verlag (Germany), 2021, 81 (1), pp.17. ⟨10.1140/epjc/s10052-021-08829-y⟩
Stasser, C, Terwagne, G, Lamblin, J, Méplan, O, Pignol, G, Coupé, B, Kalcheva, S, Dyck, S V & Sarrazin, M 2021, ' Probing neutron-hidden neutron transitions with the MURMUR experiment ', European Physical Journal C, vol. 81, no. 1, 17 . https://doi.org/10.1140/epjc/s10052-021-08829-y
European Physical Journal C: Particles and Fields, Vol 81, Iss 1, Pp 1-14 (2021)
European Physical Journal
ISSN: 1434-6044
1434-6052
DOI: 10.1140/epjc/s10052-021-08829-y⟩
Popis: MURMUR is a new passing-through-walls neutron experiment designed to constrain neutron/hidden neutron transitions allowed in the context of braneworld scenarios or mirror matter models. A nuclear reactor can act as a hidden neutron source, such that neutrons travel through a hidden world or sector. Hidden neutrons can propagate out of the nuclear core and far beyond the biological shielding. However, hidden neutrons can weakly interact with usual matter, making possible for their detection in the context of low-noise measurements. In the present work, the novelty rests on a better background discrimination and the use of a mass of a material - here lead - able to enhance regeneration of hidden neutrons into visible ones to improve detection. The input of this new setup is studied using both modelizations and experiments, thanks to tests currently performed with the experiment at the BR2 research nuclear reactor (SCK$\cdot$CEN, Mol, Belgium). A new limit on the neutron swapping probability p has been derived thanks to the measurements taken during the BR2 Cycle 02/2019A: $p < 4.0 \ \times 10^{-10}$ at 95% CL. This constraint is better than the bound from the previous passing-through-wall neutron experiment made at ILL in 2015, despite BR2 is less efficient to generate hidden neutrons by a factor 7.4, thus raising the interest of such experiment using regenerating materials.
15 pages, 8 figures, final version, accepted for publication in European Physical Journal C
Databáze: OpenAIRE