Cohomological field theories with non-tautological classes
Autor: | D. Petersen, Rahul Pandharipande, Dimitri Zvonkine |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2019 |
Předmět: |
Mathematics - Algebraic Geometry
Theoretical physics Mathematics::Algebraic Geometry Field (physics) General Mathematics 010102 general mathematics FOS: Mathematics [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 0101 mathematics 16. Peace & justice Algebraic Geometry (math.AG) 01 natural sciences Mathematics |
Zdroj: | Arkiv för Matematik Arkiv för Matematik, 2019, 57 (1), pp.191-213. ⟨10.4310/ARKIV.2019.v57.n1.a10⟩ Arkiv för Matematik, 57 (1) Ark. Mat. 57, no. 1 (2019), 191-213 |
ISSN: | 0004-2080 |
DOI: | 10.4310/arkiv.2019.v57.n1.a10 |
Popis: | A method of constructing Cohomological Field Theories (CohFTs) with unit using minimal classes on the moduli spaces of curves is developed. As a simple consequence, CohFTs with unit are found which take values outside of the tautological cohomology of the moduli spaces of curves. A study of minimal classes in low genus is presented in the Appendix by D. Petersen. 21 pages including a 5 page Appendix by D. Petersen, "Minimal cohomology classes on \bar{M}_{g,n} in low genus", final version |
Databáze: | OpenAIRE |
Externí odkaz: |