Almost sure convergence of the minimum bipartite matching functional in Euclidean space

Autor: Boutet De Monvel, J., Martin, Olivier
Přispěvatelé: Center for Hearing and Communication Research, Karolinska Institutet [Stockholm], Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Le Vaou, Claudine
Jazyk: angličtina
Rok vydání: 2002
Předmět:
Zdroj: Combinatorica
Combinatorica, Springer Verlag, 2002, 22, pp.523-530
ISSN: 0209-9683
1439-6912
Popis: Let $L_N = L_{MBM}(X_1,..., X_N; Y_1,..., Y_N)$ be the minimum length of a bipartite matching between two sets of points in $\mathbf{R}^d$, where $X_1,..., X_N,...$ and $Y_1,..., Y_N,...$ are random points independently and uniformly distributed in $[0,1]^d$. We prove that for $d \ge 3$, $L_N/N^{1-1/d}$ converges with probability one to a constant $\beta_{MBM}(d)>0$ as $N\to \infty $.
Comment: To appear in Combinatorica
Databáze: OpenAIRE