A Fitted Second-Order Difference Method for a Parameterized Problem with Integral Boundary Condition Exhibiting Initial Layer
Autor: | Mustafa Kudu, Ilhame Amirali, Gabil M. Amiraliyev |
---|---|
Přispěvatelé: | [Belirlenecek] |
Rok vydání: | 2021 |
Předmět: |
General Mathematics
010102 general mathematics Mathematical analysis Parameterized complexity Order (ring theory) Shishkin mesh Finite difference scheme Type (model theory) 01 natural sciences Mathematics::Numerical Analysis 010101 applied mathematics Homogeneous Scheme (mathematics) Uniform convergence Polygon mesh Boundary value problem 0101 mathematics Layer (object-oriented design) Singular perturbation Parameterized problem Integral boundary condition Mathematics |
Zdroj: | Mediterranean Journal of Mathematics. 18 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-021-01758-w |
Popis: | In this paper, the homogeneous type fitted difference scheme for solving singularly perturbed problem depending on a parameter with integral boundary condition is proposed. We prove that the method is $$O(N^{-2}\ln N)$$ uniform convergent on Shishkin meshes. Numerical results are also presented. |
Databáze: | OpenAIRE |
Externí odkaz: |