Garside theory and subsurfaces: some examples in braid groups

Autor: Bert Wiest, Saul Schleimer
Přispěvatelé: Warwick Mathematics Institute (WMI), University of Warwick [Coventry], Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Groups-Complexity-Cryptology
Groups-Complexity-Cryptology, De Gruyter, 2019, 11 (2), pp.61-75. ⟨10.1515/gcc-2019-2007⟩
journal of Groups, Complexity, Cryptology
journal of Groups, Complexity, Cryptology, 2019, 11 (2), pp.61-75. ⟨10.1515/gcc-2019-2007⟩
ISSN: 1867-1144
1869-6104
DOI: 10.1515/gcc-2019-2007⟩
Popis: Garside-theoretical solutions to the conjugacy problem in braid groups depend on the determination of a characteristic subset of the conjugacy class of any given braid, e.g. the sliding circuit set. It is conjectured that, among rigid braids with a fixed number of strands, the size of this set is bounded by a polynomial in the length of the braids. In this paper we suggest a more precise bound: for rigid braids with $N$ strands and of Garside length $L$, the sliding circuit set should have at most $C\cdot L^{N-2}$ elements, for some constant $C$. We construct a family of braids which realise this potential worst case. Our example braids suggest that having a large sliding circuit set is a geometric property of braids, as our examples have multiple subsurfaces with large subsurface projection; thus they are "almost reducible" in multiple ways, and act on the curve graph with small translation distance.
4 figures
Databáze: OpenAIRE