Acidic residue modifications restore chaperone activity of β-casein interacting with lysozyme

Autor: D Nourouzian, Ahmad Sharifzadeh, Ali Akbar Moosavi-Movahedi, Karim Zare, Nader Sheibani, Najmeh Poursasan, H. Hadi, H. Rajabzadeh, Mojtaba Amani, Faizan Ahmad
Rok vydání: 2011
Předmět:
Zdroj: International Journal of Biological Macromolecules. 49:616-621
ISSN: 0141-8130
Popis: An important factor in medicine and related industries is the use of chaperones to reduce protein aggregation. Here we show that chaperone ability is induced in β-casein by modification of its acidic residues using Woodward's Reagent K (WRK). Lysozyme at pH 7.2 was used as a target protein to study β-casein chaperone activities. The mechanism for chaperone activity of the modified β-casein was determined using UV–vis absorbencies, fluorescence spectroscopy, differential scanning calorimetry and theoretical calculations. Our results indicated that the β-casein destabilizes the lysozyme and increases its aggregation rate. However, WRK-ring sulfonate anion modifications enhanced the hydrophobicity of β-casein resulting in its altered net negative charge upon interactions with lysozyme. The reversible stability of lysozyme increased in the presence of WRK-modified β-casein, and hence its aggregation rate decreased. These results demonstrate the enhanced chaperone activity of modified β-casein and its protective effects on lysozyme refolding.
Databáze: OpenAIRE