Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures
Autor: | Vladislav Ginzburg, Ivan V. Yakovlev, A. V. Korzhimanov, A. A. Eremeev, A. A. Soloviev, S. A. Pikuz, M. V. Starodubtsev, A. A. Kuzmin, G. V. Pokrovskiy, Tatiana Pikuz, A. Sladkov, G. Revet, Efim A. Khazanov, Andrey Shaykin, Julien Fuchs, S. N. Chen, K. F. Burdonov, I. A. Shaikin, R. R. Osmanov |
---|---|
Rok vydání: | 2016 |
Předmět: |
Chirped pulse amplification
Coupling Resistive touchscreen Multidisciplinary Materials science business.industry lcsh:R lcsh:Medicine Laser 01 natural sciences Article 010305 fluids & plasmas law.invention Pulse (physics) Optics law 0103 physical sciences State of matter Slab Deposition (phase transition) lcsh:Q 010306 general physics business lcsh:Science |
Zdroj: | Scientific Reports Scientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
ISSN: | 2045-2322 |
Popis: | Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast “PEARL” laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities. |
Databáze: | OpenAIRE |
Externí odkaz: |