Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model

Autor: Ivan Terterov, O. I. Utesov, A. G. Yashenkin, Sergei V. Koniakhin, Alexandra Siklitskaya, Dmitry Solnyshkov
Přispěvatelé: Institut Pascal (IP), SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Physical Chemistry C
Journal of Physical Chemistry C, 2018, 122, pp.19219. ⟨10.1021/acs.jpcc.8b05415⟩
Journal of Physical Chemistry C, American Chemical Society, 2018, 122, pp.19219. ⟨10.1021/acs.jpcc.8b05415⟩
ISSN: 1932-7447
1932-7455
DOI: 10.1021/acs.jpcc.8b05415⟩
Popis: In crystalline nanoparticles, the Raman peak is downshifted with respect to the bulk material and has asymmetric broadening. These effects are straightly related to the finite size of nanoparticles, giving the perspective to use Raman spectroscopy as the size probe. By combining the dynamical matrix method (DMM) and the bond polarization model (BPM), we develop a new (DMM–BPM) approach for the description of Raman spectra of nanoparticle powders. The numerical variant of this approach is suitable for the description of small particles, whereas its analytical version is simpler to implement and allows one to obtain the Raman spectra of arbitrary-sized particles. Focusing on nanodiamond powders, the DMM–BPM theory is shown to fit the most recent experimental data much better than the commonly used phonon confinement model.
Databáze: OpenAIRE