Mode Structure in Superconducting Metamaterial Transmission-Line Resonators
Autor: | Yu Hao, Matthew LaHaye, Frank K. Wilhelm, Sagar Indrajeet, Alexey V. Ustinov, Britton Plourde, Alexander P. Zhuravel, Bruno G. Taketani, Francisco Rouxinol, Haozhi Wang, Matthew Hutchings |
---|---|
Rok vydání: | 2019 |
Předmět: |
FOS: Physical sciences
General Physics and Astronomy Applied Physics (physics.app-ph) 02 engineering and technology Quantum entanglement 01 natural sciences Superconductivity (cond-mat.supr-con) Resonator Transmission line Condensed Matter::Superconductivity 0103 physical sciences Quantum information 010306 general physics Physics Superconductivity Quantum Physics business.industry Condensed Matter - Superconductivity Metamaterial Physics - Applied Physics 021001 nanoscience & nanotechnology Qubit Optoelectronics Quantum Physics (quant-ph) 0210 nano-technology business Microwave |
Zdroj: | Physical Review Applied. 11 |
ISSN: | 2331-7019 |
DOI: | 10.1103/physrevapplied.11.054062 |
Popis: | Superconducting metamaterials are a promising resource for quantum information science. In the context of circuit QED, they provide a means to engineer on-chip, novel dispersion relations and a band structure that could ultimately be utilized for generating complex entangled states of quantum circuitry, for quantum reservoir engineering, and as an element for quantum simulation architectures. Here we report on the development and measurement at millikelvin temperatures of a particular type of circuit metamaterial resonator composed of planar superconducting lumped-element reactances in the form of a discrete left-handed transmission line (LHTL). We discuss the details of the design, fabrication, and circuit properties of this system. As well, we provide an extensive characterization of the dense mode spectrum in these metamaterial resonators, which we conducted using both microwave transmission measurements and laser scanning microscopy (LSM). Results are observed to be in good quantitative agreement with numerical simulations and also an analytical model based upon current-voltage relationships for a discrete transmission line. In particular, we demonstrate that the metamaterial mode frequencies, spatial profiles of current and charge densities, and damping due to external loading can be readily modeled and understood, making this system a promising tool for future use in quantum circuit applications and for studies of complex quantum systems. |
Databáze: | OpenAIRE |
Externí odkaz: |