Tracing Inflows and Outflows with Absorption Lines in Circumgalactic Gas

Autor: Amanda Brady Ford, N. Katz, Benjamin D. Oppenheimer, D. H. Weinberg, Robert Thompson, J. A. Kollmeier, Romeel Davé
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Popis: We examine how HI and metal absorption lines within low-redshift galaxy halos trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work showing that the ionisation level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionisation metal absorbers (e.g. MgII) tend to arise in gas that will fall onto galaxies within several Gyr, while high-ionisation metal absorbers (e.g. OVI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow, hence accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer to galaxies, and is more dominant in lower-mass halos since high-mass halos have more hot gas that is able to support itself against infall. Low-mass halos also tend to re-eject more of their accreted material, owing to our outflow prescription that employs higher mass loading factors for lower-mass galaxies. Typical HI absorbers trace unenriched ambient material that is not participating in the baryon cycle, but stronger HI absorbers arise in cool, enriched inflowing gas. Instantaneous radial velocity measures of absorbers are generally poor at distinguishing between inflowing and outflowing gas, except in the case of very recent outflows. These results suggest that probing halo gas using a range of absorbers can provide detailed information about the amount and physical conditions of material that is participating in the baryon cycle.
25 pages, 13 Figures, submitted to MNRAS. Updated citations from original submission
Databáze: OpenAIRE