HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

Autor: M. Liebl, Thomas G. Hofmann, M. Meister, S. Schumacher, Christoph Herbel, Sonja Matt, Eva Krieghoff-Henning, V. Greiner, Nadja Bitomsky, E. Conrad, B. Kriznik, Tilman Polonio-Vallon
Rok vydání: 2015
Předmět:
Zdroj: Cell Death and Differentiation
ISSN: 1476-5403
1350-9047
DOI: 10.1038/cdd.2015.75
Popis: Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response.
Databáze: OpenAIRE