Sherman's operator inequality
Autor: | S. Ivelić Bra anović, Jadranka Mić ć Hot, Josip Pečarić |
---|---|
Rok vydání: | 2021 |
Předmět: |
Computer Science::Computational Complexity
operator convex function positive linear mapping Sherman's inequality complementary to Sherman's operator inequality multidimensional Sherman's operator inequality Sherman's operator multidimensional weighted geometric mean Computer Science::Numerical Analysis Mathematical economics Operator inequality Analysis Mathematics |
Zdroj: | Journal of Mathematical Inequalities. :675-699 |
ISSN: | 1846-579X |
DOI: | 10.7153/jmi-2021-15-49 |
Popis: | In this paper we deal with Sherman's inequality and its complementary inequalities for operator convex functions, whose arguments are the bounded self-adjoint operators from C*-algebra on a Hilbert spaces and positive linear mappings between C*-algebras. We introduce the so called Sherman's operator and study its properties. Using extended idea of convexity to operator functions of several variables, we obtain multidimensional Sherman's operator inequality. We define multidimensional Sherman's operator and study its properties. At the end, we observe applications to some operator inequalities related to connections, solidarities, and multidimensional weighted geometric mean. |
Databáze: | OpenAIRE |
Externí odkaz: |