Pathways to electrochemical solar-hydrogen technologies
Autor: | Eric L. Miller, Valerio Di Palma, Maureen H. Tang, Shane Ardo, Alan Berger, Francesco Buda, Katherine E. Ayers, Stafford W. Sheehan, Enrico Chinello, Han Gardeniers, Kornelia Konrad, Jurriaan Huskens, Brian D. James, Katsushi Fujii, S. Mohammad H. Hashemi, Jan Willem Schüttauf, David Fernandez Rivas, Timothy E. Rosser, Brian Seger, Fatwa F. Abdi, Peter Christian Kjærgaard Vesborg, Dmytro Bederak, Verena Schulze Greiving, Pieter Westerik, Bernard Dam, Hans Geerlings, Detlef Lohse, Miguel A. Modestino, Katherine L. Orchard, Frances A. Houle, Tomas Edvinsson, Akihiko Kudo, Wilson A. Smith, Esther Alarcon Llado, Bastian Mei, Jan-Philipp Becker, Fadl H. Saadi, Corsin Battaglia, Gary F. Moore, Jiri Muller, Roel van de Krol, Joshua M. Spurgeon, Vincent Artero, Sophia Haussener, Pramod Patil Kunturu |
---|---|
Přispěvatelé: | Department of Chemistry [Irvine], University of California [Irvine] (UCI), University of California-University of California, Department of Chemical Engineering and Materials Science, Institute for Nanotechnology (MESA+), University of Twente [Netherlands], Mesoscale Chemical Systems Group, New York University [New York] (NYU), NYU System (NYU), Department of Science, Technology, Health and Policy Studies, Institute for Solar Fuels [Berlin], Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Center for Nanophotonics, FOM Institute for Atomic and Molecular Physics (AMOLF), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Proton OnSite, Wallingford, USA, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Institut für Energie- und Klimaforschung - Photovoltaik (IEK-5), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Zernike Institute for Advanced Materials, University of Groningen [Groningen], Air Products and Chemicals, Inc (AIR PRODUCTS AND CHEMICALS), Air Products and Chemicals, Inc., Leiden Institute of Chemistry, Universiteit Leiden [Leiden], Ecole Polytechnique Fédérale de Lausanne (EPFL), Delft University of Technology (TU Delft), Department of Applied Physics [Eindhoven], Eindhoven University of Technology [Eindhoven] (TU/e), Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-75121 Uppsala, Sweden, University of Kitakyushu, Institute of Environmental Science and Technology, Wakamatsu-ku, Kitakyushu, Japan, MESA+ Institute for Nanotechnology, Chemical Sciences Division [LBNL Berkeley] (CSD), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Molecular Nanofabrication Group, Enschede, Strategic Analysis Inc, Tokyo University of Science [Tokyo], Physics of Fluids Group, Photocatalytic Synthesis Group, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (EERE), Division of Engineering and Applied Science, California Institute of Technology, California Institute of Technology (CALTECH), Plasma & Materials Processing, Mesoscale Chemical Systems, Molecular Nanofabrication, Physics of Fluids, Photocatalytic Synthesis, University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), University of Twente, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Universiteit Leiden, Uppsala University |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
EFFICIENCY
[SDV.BIO]Life Sciences [q-bio]/Biotechnology Process (engineering) Solar hydrogen WATER-SPLITTING SYSTEMS Bioengineering Energy Engineering 02 engineering and technology 010402 general chemistry 01 natural sciences 7. Clean energy Energy engineering solar fuels solar chemical technologies Affordable and Clean Energy MD Multidisciplinary Environmental Chemistry Production (economics) NEAR-NEUTRAL PH SDG 7 - Affordable and Clean Energy PHOTOVOLTAIC-ELECTROLYSIS RENEWABLE ENERGY Power to gas Energy Renewable Energy Sustainability and the Environment business.industry LOW-COST DRIVEN Environmental economics 021001 nanoscience & nanotechnology Pollution ARTIFICIAL PHOTOSYNTHESIS 0104 chemical sciences Renewable energy Energiteknik Nuclear Energy and Engineering 13. Climate action [SDE]Environmental Sciences POWER-TO-GAS Technology roadmap Business 0210 nano-technology Polymer electrolyte membrane electrolysis SDG 7 – Betaalbare en schone energie PEM ELECTROLYSIS |
Zdroj: | Ardo, S; Fernandez Rivas, D; Modestino, MA; Schulze Greiving, V; Abdi, FF; Alarcon Llado, E; et al.(2018). Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 11(10), 2768-2783. doi: 10.1039/c7ee03639f. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/0p75x195 Energy & Environmental Science Energy & Environmental Science, Royal Society of Chemistry, 2018, 11 (10), pp.2768-2783. ⟨10.1039/C7EE03639F⟩ Energy & Environmental Science, 11(10), 2768-2783. Royal Society of Chemistry Energy and Environmental Science, 11(10), 2768-2783 Energy & environmental science, 11(10), 2768-2783. Royal Society of Chemistry Energy and Environmental Science, vol 11, iss 10 Energy & Environmental Science, vol 11, iss 10 Ardo, S, Fernandez Rivas, D, Modestino, M A, Schulze Greiving, V, Abdi, F F, Alarcon Llado, E, Artero, V, Ayers, K, Battaglia, C, Becker, J P, Bederak, D, Berger, A, Buda, F, Chinello, E, Dam, B, Di Palma, V, Edvinsson, T, Fujii, K, Gardeniers, H, Geerlings, H, Hashemi, S M, Haussener, S, Houle, F, Huskens, J, James, B D, Konrad, K, Kudo, A, Kunturu, P P, Lohse, D, Mei, B T, Miller, E L, Moore, G F, Muller, J, Orchard, K L, Rosser, T E, Saadi, F H, Schüttauf, J W, Seger, B, Sheehan, S W, Smith, W A, Spurgeon, J, Tang, M H, Van De Krol, R, Vesborg, P C K & Westerik, P 2018, ' Pathways to electrochemical solar-hydrogen technologies ', Energy & Environmental Science, vol. 11, no. 10, pp. 2768-2783 . https://doi.org/10.1039/c7ee03639f Energy & Environmental Science, 2018, 11 (10), pp.2768-2783. ⟨10.1039/C7EE03639F⟩ |
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/c7ee03639f. |
Popis: | © 2018 The Royal Society of Chemistry. Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community. |
Databáze: | OpenAIRE |
Externí odkaz: |