Tauroursodeoxycholic Acid, a Bile Acid, Promotes Blood Vessel Repair by Recruiting Vasculogenic Progenitor Cells
Autor: | Chul Kim, Seo Yoon Kim, Sang-Mo Kwon, Kang Jun Yoon, Han Na Lee, Takayuki Asahara, Jae Hyeon Kim, Shin Hee Hong, Jun Hee Lee, Sang Gyu Park, Bae Jun Oh, Seok Yoon Jung, Jin Gu Cho |
---|---|
Rok vydání: | 2015 |
Předmět: |
Adult
Male Angiogenesis Mice Nude Biology Taurochenodeoxycholic Acid Mice chemistry.chemical_compound medicine Animals Humans Progenitor cell Mice Inbred BALB C Neovascularization Pathologic Stem Cells Endothelial Cells Hematopoietic stem cell Cell Differentiation Tauroursodeoxycholic acid Cell Biology Hematopoietic Stem Cells Cell biology Mice Inbred C57BL Haematopoiesis medicine.anatomical_structure chemistry Immunology cardiovascular system Blood Vessels Molecular Medicine Female Bone marrow Stem cell Developmental Biology Blood vessel |
Zdroj: | Stem Cells. 33:792-805 |
ISSN: | 1549-4918 1066-5099 |
DOI: | 10.1002/stem.1901 |
Popis: | Although serum bile acid concentrations are approximately 10 µM in healthy subjects, the crosstalk between the biliary system and vascular repair has never been investigated. In this study, tauroursodeoxycholic acid (TUDCA) induced dissociation of CD34+ hematopoietic stem cells (HSCs) from stromal cells by reducing adhesion molecule expression. TUDCA increased CD34+/Sca1+ progenitors in mice peripheral blood (PB), and CD34+, CD31+, and c-kit+ progenitors in human PB. In addition, TUDCA increased differentiation of CD34+ HSCs into EPC lineage cells via Akt activation. EPC invasion was increased by TUDCA, which was mediated by fibroblast activating protein via Akt activation. Interestingly, TUDCA induced integration of EPCs into human aortic endothelial cells (HAECs) by increasing adhesion molecule expression. In the mouse hind limb ischemia model, TUDCA promoted blood perfusion by enhancing angiogenesis through recruitment of Flk-1+/CD34+ and Sca-1+/c-kit+ progenitors into damaged tissue. In GFP+ bone marrow-transplanted hind limb ischemia, TUDCA induced recruitment of GFP+/c-kit+ progenitors to the ischemic area, resulting in an increased blood perfusion ratio. Histological analysis suggested that GFP+ progenitors mobilized from bone marrow, integrated into blood vessels, and differentiated into VEGFR+ cells. In addition, TUDCA decreased cellular senescence by reducing levels of p53, p21, and reactive oxygen species and increased nitric oxide. Transplantation of TUDCA-primed senescent EPCs in hind limb ischemia significantly improved blood vessel regeneration, as compared with senescent EPCs. Our results suggested that TUDCA promoted neovascularization by enhancing the mobilization of stem/progenitor cells from bone marrow, their differentiation into EPCs, and their integration with preexisting endothelial cells. Stem Cells 2015;33:792–805 |
Databáze: | OpenAIRE |
Externí odkaz: |