An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes
Autor: | F. Blachère, Rodolphe Turpault |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Université de Nantes (UN), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Bordeaux (Bordeaux INP), ANR-14-CE25-0001,ACHYLLES,Capture de l'Asymptotique pour des Systèmes Hyperboliques de Lois de Conservation avec Termes Source(2014) |
Rok vydání: | 2016 |
Předmět: |
Work (thermodynamics)
Mathematical optimization Physics and Astronomy (miscellaneous) MathematicsofComputing_NUMERICALANALYSIS 2D unstructured mesh 010103 numerical & computational mathematics admissibility-preserving schemes conservation laws with source terms 01 natural sciences Set (abstract data type) Applied mathematics Polygon mesh 0101 mathematics Mathematics Numerical Analysis Conservation law Applied Mathematics Courant–Friedrichs–Lewy condition Degenerate energy levels Computer Science Applications Term (time) 010101 applied mathematics Computational Mathematics asymptotic-preserving schemes Modeling and Simulation Scheme (mathematics) finite volume schemes [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Journal of Computational Physics Journal of Computational Physics, Elsevier, 2016, ⟨10.1016/j.jcp.2016.03.045⟩ |
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2016.03.045 |
Popis: | International audience; The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes. |
Databáze: | OpenAIRE |
Externí odkaz: |