An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes

Autor: F. Blachère, Rodolphe Turpault
Přispěvatelé: Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Université de Nantes (UN), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Bordeaux (Bordeaux INP), ANR-14-CE25-0001,ACHYLLES,Capture de l'Asymptotique pour des Systèmes Hyperboliques de Lois de Conservation avec Termes Source(2014)
Rok vydání: 2016
Předmět:
Zdroj: Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2016, ⟨10.1016/j.jcp.2016.03.045⟩
ISSN: 0021-9991
1090-2716
DOI: 10.1016/j.jcp.2016.03.045
Popis: International audience; The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.
Databáze: OpenAIRE