On OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables
Autor: | Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, Dmitry Sokolov |
---|---|
Přispěvatelé: | St. Petersburg Department of V.A. Steklov Mathematical Institute (PDMI RAS), Steklov Mathematical Institute [Moscow] (SMI), Russian Academy of Sciences [Moscow] (RAS)-Russian Academy of Sciences [Moscow] (RAS), Systèmes complexes, automates et pavages (ESCAPE), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), ANR-15-CE40-0016,RaCAF,Dépasser les frontières de l'aléatoire et du calculable(2015), Steklov Mathematical Institute (SMI), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES Logic Computer science error-correcting codes Existential quantification 02 engineering and technology 0102 computer and information sciences [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] Computer Science::Artificial Intelligence Computer Science::Computational Complexity System of linear equations Mathematical proof 01 natural sciences Computer Science::Logic in Computer Science Quantifier elimination ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION 0202 electrical engineering electronic engineering information engineering communication complexity 0101 mathematics Time complexity expanders 000 Computer science knowledge general works Proof complexity Pigeonhole principle 010102 general mathematics [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] 020206 networking & telecommunications OBDD Philosophy TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 010201 computation theory & mathematics Tseitin formulas Computer Science Boolean satisfiability problem Algorithm Hardware_LOGICDESIGN |
Zdroj: | 34th Symposium on Theoretical Aspects of Computer Science STACS: Symposium on Theoretical Aspects of Computer Science STACS: Symposium on Theoretical Aspects of Computer Science, Mar 2017, Hannover, Germany. pp.43:1-43:14, ⟨10.4230/LIPIcs.STACS.2017.43⟩ The Journal of Symbolic Logic The Journal of Symbolic Logic, Association for Symbolic Logic, In press, pp.1-41. ⟨10.1017/jsl.2019.53⟩ The Journal of Symbolic Logic, Association for Symbolic Logic, 2020, 85 (2), pp.632-670. ⟨10.1017/jsl.2019.53⟩ |
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.4230/lipics.stacs.2017.43 |
Popis: | In 2004 Atserias, Kolaitis, and Vardi proposed $\text {OBDD}$ -based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of an identically false $\text {OBDD}$ from $\text {OBDD}$ s representing clauses of the initial formula. All $\text {OBDD}$ s in such proofs have the same order of variables. We initiate the study of $\text {OBDD}$ based proof systems that additionally contain a rule that allows changing the order in $\text {OBDD}$ s. At first we consider a proof system $\text {OBDD}(\land , \text{reordering})$ that uses the conjunction (join) rule and the rule that allows changing the order. We exponentially separate this proof system from $\text {OBDD}(\land )$ proof system that uses only the conjunction rule. We prove exponential lower bounds on the size of $\text {OBDD}(\land , \text{reordering})$ refutations of Tseitin formulas and the pigeonhole principle. The first lower bound was previously unknown even for $\text {OBDD}(\land )$ proofs and the second one extends the result of Tveretina et al. from $\text {OBDD}(\land )$ to $\text {OBDD}(\land , \text{reordering})$ .In 2001 Aguirre and Vardi proposed an approach to the propositional satisfiability problem based on $\text {OBDD}$ s and symbolic quantifier elimination (we denote algorithms based on this approach as $\text {OBDD}(\land , \exists )$ algorithms). We augment these algorithms with the operation of reordering of variables and call the new scheme $\text {OBDD}(\land , \exists , \text{reordering})$ algorithms. We notice that there exists an $\text {OBDD}(\land , \exists )$ algorithm that solves satisfiable and unsatisfiable Tseitin formulas in polynomial time (a standard example of a hard system of linear equations over $\mathbb {F}_2$ ), but we show that there are formulas representing systems of linear equations over $\mathbb {F}_2$ that are hard for $\text {OBDD}(\land , \exists , \text{reordering})$ algorithms. Our hard instances are satisfiable formulas representing systems of linear equations over $\mathbb {F}_2$ that correspond to checksum matrices of error correcting codes. |
Databáze: | OpenAIRE |
Externí odkaz: |