AI in Semiconductor Industry

Autor: De Luca, Cristina, Lippmann, Bernhard, Schober, Wolfgang, Al-Baddai, Saad, Pelz, Georg, Rojko, Andreja, Pétrot, Frédéric, Coppola, M., John, Rainer
Přispěvatelé: Infineon Technologies AG [München], Infineon Technologies AG [Regensburg] (Infineon), Infineon Technologies AG [Villach] (Infineon), System Level Synthesis (TIMA-SLS), Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), STMicroelectronics [Grenoble] (ST-GRENOBLE), AVL List GmbH, ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), European Project: 826060,AI4DI, System Level Synthesis (SLS )
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Artificial Intelligence for Digitising Industry
Artificial Intelligence for Digitising Industry, River Publishers, pp.105-112, 2021, 9788770226646. ⟨10.13052/rp-9788770226639⟩
Artificial Intelligence for Digitising Industry – Applications ISBN: 9781003337232
DOI: 10.13052/rp-9788770226639⟩
Popis: Directeur de l'ouvrage : Ovidiu Vermesan, Reiner John, Cristina De Luca, Marcello CoppolaCollection : Series in Communications; International audience; This introductory article opens the “Applications of AI in the Semiconductor Industry” section by giving a holistic overview of the development of artificial intelligence (AI) technologies applied to the industry. Historically, the semiconductor industry has utilised complex automation for many tasks and areas, especially in repetitive work and uniform processes. The high need for flexibility in manufacturing, increased diversification of products, complexity, and demand for more autonomous operations, including human-machine interaction, have led to a strong push towards using AI technologies in semiconductor manufacturing. AI technologies are applied in semiconductor product development, digitised product definition (DPD), knowledge management system for risk assessment and root cause analysis, image recognition for inspection and defect classification in front end (FE) and back end (BE) applications for anomaly detection in process chains. Deep learning (DL) and Machine Learning (ML) techniques have given a new stimulus to semiconductor industry research to address the unique challenges for semiconductor manufacturing as the technologies nods are evolving and the number of process parameters to be controlled is increasing. In the end,the article introduces the four contributions to this section, highlighting the use of AI, computer vision, neural networks (NNs) in various use cases in semiconductor manufacturing processes.
Databáze: OpenAIRE